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LElTER TO THE EDITOR 

Radiation damping effects on Dicke’s maser model 

Miguel Orszag 
Physics Department, Ryerson Polytechnic Institute, Toronto, Canada 

Received 11 October 1976 

Abstract. The critical temperature for the ‘normal’ to ‘super-radiant’ phase transition and 
the free energy are modified by the presence of phonons. Results show that whenever there 
are photons present, there are also phonons. 

A remarkable property of Dicke’s model for a maser (Dicke 1954) is that for certain 
values of the coupling constant (A >A,), a phase transition is present (Hepp and Lieb 
1973). 

As far as the author knows, there is no experimental evidence for the ‘normal’ to 
‘super-radiant’ phase transition. 

Since Dicke’s model is only valid when the wavefunctions are non-overlapping (i.e. 
low density radiating media) and considering that Lieb’s phase transition occurs at a 
high coupling constant, the model does not seem suitable to describe a realistic physical 
system. A more realistic model is one in which a loss mechanism for the field is 
introduced, in the form of many-mode phonons. 

One might expect the following two changes when phonons are present. 
( a )  Since only some of the atoms will emit radiation out of the system, one might 

expect a less stringent condition on the coupling constant between the atoms and the 
field for the phase transition to exist. The results presented here show that this is the 
case. 

( b )  Whenever there are photons present, one would expect radiationless transitions 
to occur, and therefore the presence of phonons (Pickles and Thompson 1974). This is 
also observed in the results. 

Consider a system of spins coupled by the electromagnetic radiation only and 
assume a radiation damping mechanism through many loss oscillators or phonons, 
obeying the boson commutation rules. The Hamiltonian in question is: 

M N a t  a 
+ i = l  1 f h w A ( ~ ~ a j + ~ ~ a f ) +  j = l  1 hkj(atbj+ab:) ,  

or, defining 

4 = O o / W ,  Wf = f l f / W ,  Ki = kj/W, (2) 
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the Hamiltonian can be written in the following way (per unit hw): 

In equation (3) ,  a and a t  are the annihilation and creation operators for the field and bj, 
bj are the corresponding operators for the jth phonon mode; A is the coupling constant 
between the radiation field and the atoms and kj the coupling constant between the jth 
mode of the oscillator bath. 

A convenient representation is given by the state: 

Is19 s2 * * * SN)(nl>(n2> 9 * * InM)ln>,  (4) 

where In) is the photon number state and Inj) is the phonon number state for the jth 
mode, M is the number of modes. The commutation rules €or the photons and phonons 
are: 

[ a , a t J = I ,  

[bi, bj] = Sip 

In thermal equilibrium, the partition function is: 

2 = Tr e-BH, 

which in the present representation can be written as: 

x(nl((nz1. . . (nM( e-BH(nM). . . Inl)(n)(S1. . . s N ) .  (7 )  

Assume in the thermodynamic limit that (Wang and Hioe 1973, Orszag, to be 
published) : 

The various terms in the partition function can be separated in commuting products: 
M 

j -1  
2 = 1 1 e-8n exp( -0 1 wjnj)(nl( . . . (nMl(nI exp 

s1.S~ ..& n,nl,nz ... nM 

x [t t>(n1).  . . InM)(S1. . . SNlnE1 e-8hiJS1 . . . SN), (9) 

hi =~errf+4A(uc++utrr;) .  (10) 

where 

The diagonalization of hi is straightforward, giving the following eigenvalues: 

The eigenvalues are actually operators and equation (11) is interpreted as a power 
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series expansion of the (uta) operator. Since g1,2 is diagonal in the In) representation, 
we can write: 

x(nll(n21. . . (nMl(n1 exp[-P zE1 ~ ~ ( a + b ~ + a b ~ ) I I n ) J n l ) .  . . InM). 

(nlI(nI exp[-PKl(a+b1 +ab: )~~n>In l>  = ~ 2 ~ ~ 1 J n n l >  

A simple calculation proves that: 

where 10(2PK1&) is the zeroth order modified Bessel function. 
Define the parameters: 

X f  = n f / N  x = n / N ,  

then 

z = exp[ 4 - p .  -/I qx, + 1 I ~ ( I ~ ( ~ P K , N L ~ ~ >  
M M 

X , . X 2  ... X M , X  J = 1  j - 1  
(steps N-‘ )  

+In[ 2 cosh[ f (1 + s x )  1/2]})]. 

For a large argument, 1 0 ( 2 / 3 K , N G )  can be approximated as: 

10(2/31c,N&,) = [ e x p ( 2 P K j N ~ i ) ] ( 4 ~ P ~ N ~ , ) - 1 / 2 .  

Neglecting a term of the order (In N)/N,  the partition function is: 
M M 

dx l . . . dxMdxexp  w,xi+2P 1 Ki&, 
j = 1  

+ln[2 cosh[f(l+$~)”~]})]. 

This integral can be evaluated by the method of steepest descent. The result for the free 
energy is: 

M 

NP j = l  
(18) 

f= --lnZ=,y*(l- 1 K:/wj)-ln[2cosh($&)], 

where: 
4A2 1/2 

7 = (1 +-p*) 
and x *  is solution of: 

The condition on the number of phonons is: 
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Since 

tanh[f(l+$x)1’2] s l l  

equation (20) has solution ,y # 0 only if: 
M 

A2>c(1- j=1 1 K ? / q ) .  

With no coupling between the electromagnetic field and the reservoir (i.e. K, = 0). the 
condition (22) reduces to A > E ,  found previously by several authors. 

The critical temperature, obtained by setting x = 0, turns out to be: 

We now summarize the results. 
If 

M 

there is no solution for equation (20), and the maximum exponent in the integration 
procedure is obtained for x = x, = 0. The free energy in this case is: 

f = -ln[2 cosh(&P)]. (25) 
If A > A ,  and P <&, again there is no solution for equation (20) and the free energy is 
given by equation (25) .  This is the ‘normal state’, characterized by no photons or 
phonons. If A > A ,  and p >Po equation (20) has a solution x f 0, x, # 0. This is the 
‘super-radiant’ state. The relation between the average (statistical) number of phonons 
and photons is given by equation (21). 
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